skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kalow, Julia A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 14, 2026
  2. Free, publicly-accessible full text available October 27, 2026
  3. Materials made from covalently cross-linked polymer networks are ubiquitous in everyday life but are difficult to process at the end of their life cycle. Therefore, it is essential to design materials with sustainability in mind to reduce the detrimental effects of plastic waste buildup. Functionalized triazines such as 1,3,5-triazine-2,4,6-triamine (melamine), hexamethylolmelamine (HMM), and hexakis(methoxymethyl)melamine (HMMM) are key components of robust thermosets, adhesives, and coatings. We combine HMM and HMMM with an alkoxysilane to produce transparent thermosets with remarkable glass adhesion. The dynamicity of silyl ether bonds in the network makes the materials susceptible to methanolysis, enabling the recovery of HMMM and the substrate. A combination of solution- and solid-phase techniques is used to elucidate both gelation and degradation pathways. 
    more » « less
  4. Multiple properties can be programmed into a single dynamic material by using heat 
    more » « less
  5. Thioesters are an essential functional group in biosynthetic pathways, which has motivated their development as reactive handles in probes and peptide assembly. Thioester exchange is typically accelerated by catalysts or elevated pH. Here, we report the use of bifunctional aromatic thioesters as dynamic covalent cross-links in hydrogels, demonstrating that at physiologic pH in aqueous conditions, transthioesterification facilitates stress relaxation on the time scale of hundreds of seconds. We show that intramolecular hydrogen bonding is responsible for accelerated exchange, evident in both molecular kinetics and macromolecular stress relaxation. Drawing from concepts in the vitrimer literature, this system exemplifies how dynamic cross-links that exchange through an associative mechanism enable tunable stress relaxation without altering stiffness. 
    more » « less